Appendix. Temperature model for inner Southern California Bight

The model for the ocean temperature, *T*, as modified slightly from that derived in Gelpi and Norris (2008) is a function of depth, *z* and time, *t*. In complex notation, $i = \sqrt{-1}$

$$T(z,t) = T_0(z) + T_1(z,t)$$

$$T_0(z) = -C_0'z + A$$

$$T_1(z,t) = \frac{C'}{2i\alpha} \left[\frac{e^{-\beta z} - e^{-i\alpha z}}{i\alpha + \beta} + \frac{e^{-\beta z}}{i\alpha - \beta} \right] e^{-i\omega t}$$

$$C_0' = \frac{L_0 \beta}{c_p \rho \kappa}$$

$$C' = \frac{L_1 \beta}{c_p \rho \kappa} e^{i\phi}$$

$$\alpha^2 = \frac{i\omega}{\kappa}$$

with z and t in meters and seconds, respectively.

κ	Vertical eddy diffusion coef.	$1.1 \ge 10^{-4} \text{ m}^2 \text{s}^{-1}$
β	Light extinction	0.435 m^{-1}
ρ	Density of sea water	1024 kg/m^3
c_p	Specific heat of water	$4186 \text{ J-kg}^{-1}-^{\circ}\text{C}^{-1}$
$\hat{L_0}$	Mean surface flux	82.7 W-m^{-2}
L_1	Amplitude of surface flux	125.3 W-m^{-2}
ω	Angular frequency of year	$2\pi/(31.577 \times 10^6 \text{s})$
ϕ	Insolation phase	$2\pi(180.7 \text{ d}/365.25 \text{ d})$
À	Surface mean temperature	17.7 °C

Table A. Parameter values for temperature model